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Weakly nonlinear stability of ultra-thin slipping films
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Abstract

A weakly nonlinear theory is presented to study the effects of slippage on the stability of the ultra thin polymer films.

The nonlinear mathematical model is constructed for perturbations of smal finite amplitude based on hydrodynamic equations with the long

wave approximation. Results reveal that the nonlinearity alw ays accelerates the rupture of the films. T he influences of the dip length, film

thickness and initial amplitude of perturbations on the rpture of the films are investigated.
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Liquid thin film flows are commonly encountered
in nature and in numerous practical applications, e.g.
in chemical engineering, materials process, or micro-
electronic systems. A great deal of theoretical studies
have been performed to understand the stability, dy-
namics and dewetting of the flows. For ultra-thin
films whose mean thicknesses are less than 100 nm,
the flows can be described by Navier-Stokes equations
including the ir}termolecular body force or disjoining
pressure term - Long wave or lubrication approxi-
mation is usually applied to obtain a set of simplified
system since the film thickness is quite smaller than
the streamwise length scale. An outline of the theo-
retical work based on long wave approximation was
proposed by Oron, Davis and Bankoff'?. Previous
researches showed that the free films are inherently
unstable due to the intermolecular potential while the
films on a no-slip substrate might be stable when the
effective Hamaker constant in molecular interaction is
neg ativel>

M ost of the current theoretical studies focused on
the films satisfying no-slip velocity condition on sub-
strates. However, recent experiments and computa-
tions based on molecular dynamics simulation indicat-
ed that slipping velocity can be evidently found in
macromolecular polymer films’ ¥ . Various ranges of
dip length were reported in different experiments,
varying from afew nanometers to a thousand microm-
eters. Therefore, it might be expected that the slip-
page has great influences on their hydrodynamic be-
havior. A linear stability analysis was conducted by

ultra-thin film weakly nonlinear theory hydrodynamic stability, rupture of thin film.

Sharma et al. for New tonian fluid taking into account
% . Results showed that slip-
page can encourage the development of the perturba-

the effect of slippage! "

tions and the rupture or the breakup, in the sense
that the local film thickness becomes zero in a finite
time, and can reduce the number density of holes for
slip strong enough. To understand the nonlinear evo-
lution and morphology of the flow, numerical simula-
tions were performed henceforth based on Navier-
Stokes equations with long wave approximation for
both weak and strong slipd "' . Results showed
that the ratio of rupture time between the nonlinear
computations and linear analyses is always less than
I, which reveals that the nonlinear effects can accel-
erate the breakup of the films.

Com pared with the linear theory and numerical
simulation, weakly nonlinear theory (WNT) has ad-
vantages that it can not only obtain the analytical so-
lution which is convenient to analyze, but also capture
the essential physics of the problem, although it is
not fully quantitatively accurate. The stabilities of no-
slip on substrate and free thin films subject to finite
amplitude disturbances have been examined by the

[34613 " For free films

Erneux et al. gave an analytical estimate of the tup-
[3.4

weakly nonlinear theory
ture time Sharma et al. discussed the roles of
different kinds of forces, such as viscous effect and
surface tension, on the stability of the flows, and
found that intermolecular force could promote the de-
velopment of dominant perturbations in the nonlinear
sta,ge[ 4,
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This paper aims at applying the weakly nonlinear
theory to the ultra-thin films with slippage. The hy-
drody namic equations are described and the nonlinear
mat hematical model and related com putational results
are presented.

1 Hydrodynamic equations

A schematic diagram of the thin film with thick-
ness ho is described in Fig. 1. The two-dimensional
Navier-Stokes equations in (x, z ) coordinates can be
given as

Vev=0,

Ovi+vVy)= 1V y—Vp—V & (1
where the subscript stands for partial differentiations
v Cus w) is the velocity vector, p is the pressure,
and @ is the intermolecular body potential. #, 0, 7Y
are dynamic viscosity, density, and surface tension,
respectively. The van der Waals potential @ is the
most usually adopted long range force in the previous
studies. In the non-retarded form it can be given as

A
PEPER 2

where 4 denotes the Hamaker constant. To consider

the retardation effect, the potential will be general-
ized as

A 1+ cih/R
oeh’ (14 ah/ R
Here, R is a retardation parameter, the numerical
constants c¢1, c¢2 equal 7.98 and 5. 32, respectively,
other physical parameters in the present study are A4
=10 *’J, ¥Y=20m}/m’, F=1kg/ (ms), ©=1000
kg/m3, and R=100 nm.
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Fig. 1.

S chematic diagram of thin film flow.

The boundary conditions on the substrate z =10

are ex pressed as
w=0, w—b ' 'u=0 @y
where the slip length b is defined the same as that in
the publications available, implying the shear stress
balance at the solid-liquid interface. The case b=10

corresponds to no-slip condition, i.e. u=0.

The dynamic and kinematic conditions are writ-

ten respectively on the free surface z="h (x, 1) as

(- + w)A—hD)+ 2he(wz: — u) = 0, (5)

200 (1— hw. — hyCu-+ wo)] A+ 72D

p— T (1+h) V2= 0,
hit+uhe= w.

(6)
D

The length and time are scaled with the thick-
ness of film /4o and kinematic viscosity coefficient v.
Then the dimensionless parameters are obtained as

follows;

X *_ Z L *_ h
X - hO, z ho’ t hé? h ]’lo’

% * h

B — 2’ g = ¥ e Who

h() v v
X _ (p pg)/’l() X _ A - M
pU2 ’ hOPUZ’ PUZ

Applying the long wave approximation to

Eq. (1) and boundary conditions Eqgs. (4)—(7),
the equations are transformed into a set of nonlinear
differential equations for the horizontal component of
velocity and film thickness which reads
wit wuy — Do + @+ B 'ub !
= 4w+ duchh (8)
he+ (uh)x = 0. 9)
Details of the mathematical operations can be found in
Ref. [ 12]. It should be pointed out that the variables
in Egs. (8) and (9) have been rewritten in the long-
scale form, and the superscripts, which denote the
dimensionless parameters, are omitted for the sake of
simplification.

2  Mathematical formulation of the weakly
nonlinear theory

To investigate the nonlinear development of
small amplitude perturbations, the film thickness is
expressed as

() =1+h'

=1+ g1 (Decoskx + € y2 (1 cos2kx
+ 0, 10)
where y1 and y2 are the amplitudes of the first and
second Fourier modes, k is the wave number of the
perturbations. Substituting Eq. (10) into Eq. (9)
yields the expression of u up to the order of O (&),

! ! !

= %[ gy sinkx + 82(%)/2 yly'J sin2kx]
+ 0. an
The primes in Egs. (10) and (11) mean the deriva-

u
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tives respect to time. Substituting Eqs. (10) and
(11) into Eq. (8), a series of equations of different
orders of € can be obtained by mathematical manipu-
lations. The equations of the first two orders are
0(®): y,+ (B +4k )y, + (R + 0y = 0,
) a2)
O, yat (B 1416 )y + (16 B+ B )ys
= Zyi/yl +4 y1,2+ Q4k*+ 4B ™! )yfyl
— D, 127, a3
where the van der Waals body force

o = —ék[ eQ gy sinkx
+ (P yot oy sin2kx] .

The resulting equation (12) corresponds to the lin-
earized equations (8) and (9). The dispersion rela-
tion can be obtained by adopting the normal mode
with the time growth rate w, y1= yoexp(w¢), then
we get

o'+ B '+ 4D o+ (T4 R = 0. 14
Thus the two roots @ and w; of the equation can be
calculated, and we suppose @™ w;. The results ob-
tained from the linear stability theory, which have
been presented in Refs. [ 10] and [ 12] , showed that
the slip velocity will increase the growth rate of the
perturbations and the wavelength of the most unstable
mode, and accordingly decrease the number density of

the holes.

To solve Eqs. (12) and (13), we should intro-
duce initial conditions. Without loss of generality,
the initial conditions for Eq. (12) are given such that
the solution can be obtained as yl:eXp((l;‘lt). For

Eq. (13) we simply set y2(0)=0, and y, (0)=0.
Therefore, these problems can be solved sequentially.
Note that only the dominant terms will be reserved in
the solutions since we only concentrate on the long
time behavior.

3 Results

It can be easily found from Eq. (10) that at the
most dangerous x-position for a given wave number
k, the evolution of perturbed thickness can be alw ays
w ritten as

B (= hi+ha =10+ Ey2(). A
Thus the rupture or blow up time T, can be defined as
the time when the thickness of the films vanishes. In
addition, the rupture time 7T based on the linear sta-

bility theory is estimated to be
T = In(1/ &)/ @ (kpay )» a6

where k.. denotes the wave number of the most un-
stable mode.

The variation of thickness with time for the most
unstable perturbation is shown in Fig. 2 for ho=
50 nm, 6b=10"m, and €=0. 001, together with the
linear and second order terms. It can be seen that the
nonlinear effect promotes the breakup of the film with
slippages  which confirms the previous experimental
and theoretical studies. The growth rate of the second
order term is much larger than that of the first order
one. It should be noted that for convenience of com-
parison to the previous work, the physical variables in
the plots of this work are in dimensional form.
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Fig. 2.
mode (1p=50nm, b= 10#m, and €= 0.001).

Variation of the film thickness for the most unstable linear

The rupture time of the weakly nonlinear and
linear theories varying with wave number & is given
in Fig. 3 for different slipping lengths when ho=
10 nm. The result demonstrates that the slipping ve-
locity enhances the growth of both linear and nonlin-
ear disturbances and thus reduces the breakup time
of the liquid films. Although the rupture time based
on the linear theory is always longer than the blowup
time T}, the nonlinearity does not change the wave
number of the most unstable perturbation. Another
feature of the plot is that the decreases of the breakup
time are more apparent for perturbations with lower
wave number, whereas the two curves of T}, and T
are almost overlapped for higher w ave number modes.
The ratio between Ty and Tis 0.471 for k=10 °
when b= 10"m, while the ratio equals 0.944 for the
cutoff wave number k=0. 256.

The dependences of the blowup time and the
wave number kma of the most dangerous modes on
the film thickness are presented in Fig. 4 for different
slip lengths. It can be found that the grow th rate will
decrease rapidly with the increasing mean thickness of
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the films. Hence, the blowup time increases by sev-
eral orders of magnitude. The meantime & max declines
in Fig. 4(b), which implies that the number density
of the broken holes will reduce sharply, the same as
that already reported in experimental work available.
For thinner films, the increase of the slip length will
drop down the wave number of the most unstable
modes, as shown in Fig. 4(b).
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Fig. 3.  Comparison of the breakup time hased on linear and
weakly nonlinear theories for different slipping lengths when ho=

10nm and &= 0. 001.
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Fig. 4.

blowup time and (b) wave numbers of the most unstable perturba-
tion when €= 0. 001.

Effects of film thickness and slip length on (a) the

Figure 5 considers the effect of the initial ampli-
tudes of the perturbations on the ratio between T},
and T for different slip lengths when 0= 40 nm.
Generally, nonlinearities accelerate the film rupture

since the ratios are always less than 1. The decrease
of the ratio with the increasing initial amplitude indi-
cates that the nonlinear term plays a more important
role for larger €. The dependence of the ratio is much
weaker on the magnitude of the slip length, as shown
in Fig. 5. It changes slightly from 0. 75 to 0.82 for
€=0.1, from 0.93 to 0.95 for e=0.0001 when b
jumps from 10#m to 10c¢m. Anyway, as predicted by
the weakly nonlinear theory, the destabilizing effects
are stronger for smaller slip length.

0.95
0.90f
e
< 0.85}
0.80F
0025 0050 0075 0.100
&€
Fig. 5. Variation of the ratio between T} and T with the initial

am plitudes for different slip lengths when Ay= 40 nm.

4 Conclusion

To study the effects of the slippage on the stabil-
ity of ultra-thin films a mathematical model has been
established based on the weakly nonlinear theory.
The present analysis reveals that the nonlinearity al-
ways accelerates the breakup of the films. As already
found in experiments and confirmed by linear analy-
ses, the slipping velocity on the substrate enhances
the development of perturbations and decreases the
wave number of the most unstable mode, which leads
to the decrease of the number density of the holes.
The nonlinear effects are more apparent for perturba-
tions with lower wave number. The results suggest
that the ratio of nonlinear and linear breakup time
will decrease as the magnitude of the initial perturba-
tions increases which implies the nonlinear effects
become stronger. However, the ratio is almost inde-
pendent of the strength of the dip length for a given
initial perturbation.
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